Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134232, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593666

RESUMO

In a 120-day microcosm incubation experiment, we investigated the impact of arsenic contamination on soil microbial nutrient metabolism, focusing on carbon cycling processes. Our study encompassed soil basal respiration, key enzyme activities (particularly, ß-1,4-N-acetylglucosaminidase and phosphatases), microbial biomass, and community structure. Results revealed a substantial increase (1.21-2.81 times) in ß-1,4-N-acetylglucosaminidase activities under arsenic stress, accompanied by a significant decrease (9.86%-45.20%) in phosphatase activities (sum of acid and alkaline phosphatases). Enzymatic stoichiometry analysis demonstrated the mitigation of microbial C and P requirements in response to arsenic stress. The addition of C-sources alleviated microbial C requirements but exacerbated P requirements, with the interference amplitude increasing with the complexity of the C-source. Network analysis unveiled altered microbial nutrient requirements and an increased resistance process of microbes under arsenic stress. Microbial carbon use efficiency (CUE) and basal respiration significantly increased (1.17-1.59 and 1.18-3.56 times, respectively) under heavy arsenic stress (500 mg kg-1). Arsenic stress influenced the relative abundances of microbial taxa, with Gemmatimonadota increasing (5.5-50.5%) and Bacteroidota/ Nitrospirota decreasing (31.4-47.9% and 31.2-63.7%). Application of C-sources enhanced microbial resistance to arsenic, promoting cohesion among microorganisms. These findings deepen our understanding of microbial nutrient dynamics in arsenic-contaminated areas, which is crucial for developing enzyme-based toxicity assessment systems for soil arsenic contamination.


Assuntos
Arsênio , Carbono , Microbiologia do Solo , Poluentes do Solo , Arsênio/metabolismo , Arsênio/toxicidade , Carbono/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Fósforo/metabolismo , Solo/química
2.
Anal Chem ; 96(3): 1093-1101, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38204177

RESUMO

Lactobacillus is an important member of the probiotic bacterial family for regulating human intestinal microflora and preserving its normalcy, and it has been widely used in infant formula. An appropriate and feasible method to quantify viable Lactobacilli cells is urgently required to evaluate the quality of probiotic-fortified infant formula. This study presents a rapid and accurate method to count viable Lactobacilli cells in infant formula using flow cytometry (FCM). First, Lactobacillus cells were specifically and rapidly stained by oligonucleotide probes based on a signal-enhanced fluorescence in situ hybridization (SEFISH) technique. A DNA-binding fluorescent probe, propidium monoazide (PMA), was then used to accurately recognize viable Lactobacillus cells. The entire process of this newly developed PMA-SEFISH-FCM method was accomplished within 2.5 h, which included pretreatment, dual staining, and FCM analysis; thus, this method showed considerably shorter time-to-results than other rapid methods. This method also demonstrated a good linear correlation (R2 = 0.9994) with the traditional plate-based method with a bacterial recovery rate of 91.24%. To the best of our knowledge, the present study is the first report of FCM combined with PMA and FISH for the specific detection of viable bacterial cells.


Assuntos
Fórmulas Infantis , Lactobacillus , Propídio/análogos & derivados , Humanos , Lactobacillus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Citometria de Fluxo/métodos , Hibridização in Situ Fluorescente , Azidas , Bactérias , Viabilidade Microbiana
3.
Adv Clin Exp Med ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747442

RESUMO

BACKGROUND: Osteosarcoma is a pleomorphic cancer that frequently affects children and teenagers. Although several chemotherapy regimens have been utilized for many years, the best therapeutic option for the treatment of osteosarcoma has not yet been determined. OBJECTIVES: This meta-analysis was designed to assess the clinical efficacy of a high-dose methotrexate, doxorubicin and cisplatin (MAP) regimen and compare its survival outcomes with those of other chemotherapy strategies in patients diagnosed with osteosarcoma. MATERIAL AND METHODS: We systematically searched databases, namely Embase, the Cochrane Library and PubMed, up to August 2022, for relevant studies investigating the impact of the MAP chemotherapy protocol on survival among patients with osteosarcoma. The odds ratio (OR) pooled estimates and their 95% confidence intervals (95% CIs) were calculated. RESULTS: Twelve studies including 4102 patients were eligible for analysis in this study. The estimated pooled ORs of the 3-year overall survival (OS) and event-free survival (EFS) were OR = 1.08 (95% CI: 0.72-1.62, p = 0.70) and OR = 1.04 (95% CI: 0.81-1.32, p = 0.78, respectively). The 5-year OS and EFS were OR = 0.87 (95% CI: 0.62-1.23, p = 0.42) and OR = 1.13 (95% CI: 0.76-1.68, p = 0.54), respectively, with no statistical differences. The subgroup analysis of MAP compared to a 2-drug regimen (doxorubicin and cisplatin) revealed a significant difference between the 2 chemotherapy strategy groups in 3-year OS rates (OR = 0.72 (95% CI: 0.56-0.92, p = 0.009)) and 5-year EFS rates (OR = 0.57 (95% CI: 0.43-0.76, p < 0.001)). CONCLUSION: The MAP chemotherapy strategy for osteosarcoma showed superiority over other regimens, especially over the 2-drug regimen (doxorubicin/cisplatin), in terms of better prognosis and safety.

4.
Nanoscale ; 15(33): 13515-13531, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37580995

RESUMO

As a highly promising clean energy source to replace fossil fuels in the 21st century, hydrogen energy has garnered considerable attention, with water electrolysis emerging as a key hydrogen production technology. The development of highly active and stable non-precious metal-based catalysts for the hydrogen evolution reaction (HER) is crucial for achieving efficient and low-cost hydrogen production through electrolysis. Recently, heterostructure composite catalysts comprising two or more non-precious metals have demonstrated outstanding catalytic performance. First, we introduced the basic mechanism of the HER and, based on the reported HER theory, discussed the essence of constructing heterostructures to improve the catalytic activity of non-noble metal-based catalysts, that is, the coupling effect between components effectively regulates the electronic structure and the position of d-band centers. Then three catalytic effects of non-precious metal-based heterogeneous catalysts are described: synergistic effect, electron transfer effect and support effect. Lastly, we emphasized the potential of non-precious metal-based heterogeneous catalysts to replace precious metal-based catalysts, and summarized the future prospects and challenges.

5.
Adv Mater ; 35(47): e2303256, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37391205

RESUMO

Advanced coloration methods are of pivotal importance in science, technology, and engineering. However, 3D structural colors that are critical for emerging multidimensional information representation and recording are rarely achievable. Here, a facile voxel-level programmable 3D structural coloration in the bulk lithium niobate (LiNbO3 ) crystal is reported. This is achieved by engineering wavelength-selective interference between ordinary (O) and extraordinary (E) light in the crystal matrix. To induce effective phase contrast between O and E light for establishing the highly localized interference across the visible band, the presence of a pulse-internal-coupling effect is revealed in the single-pulse ultrafast laser-crystal interaction and an ultrafast-laser-induced micro-amorphization (MA) strategy is thus developed to manipulate local matrix structure. Consequently, micro-nanoscale colorful voxels can be fast inscribed into any spatial position of the crystal matrix in one step. It is demonstrated that the colors can be flexibly manipulated and quickly extracted in 3D space. Multidimensional MA-color data storage with large capacity, high writing and readout speed, long lifetime, and excellent stability under harsh conditions is achieved. The present principle enables multifunctional 3D structural coloration devices inside high-refractive-index transparent dielectrics and can serve as a general platform to innovate next-generation information optics.

6.
Dalton Trans ; 52(16): 5028-5033, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017375

RESUMO

UiO-66-NH2 was functionalized with an ionic polymer poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) through a post-synthetic modification (PSM) strategy. Due to the excellent dispersibility in water and the existence of abundant active binding sites, the obtained UiO-66-PAMPS shows significantly improved adsorption capability toward methylene blue (MB) in aqueous solution.

7.
Int J Biol Macromol ; 239: 124279, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011753

RESUMO

The lack of sufficient active binding sites in commonly reported sodium alginate (SA)-based porous beads hampers their performances in adsorption of water contaminants. To address this problem, porous SA-SiO2 beads functionalized with poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) are reported in this work. Due to the porous properties and the existence of abundant sulfonate groups, the obtained composite material SA-SiO2-PAMPS shows excellent adsorption capacity toward cationic dye methylene blue (MB). The adsorption kinetic and adsorption isotherm studies reveal that the adsorption process fits closely to pseudo-second-order kinetic model and Langmuir isotherm model, respectively, suggesting the existence of chemical adsorption and monolayer adsorption behavior. The maximum adsorption capacity obtained from Langmuir model is found to be 427.36, 495.05, and 564.97 mg/g under 25, 35, and 45 °C, respectively. The calculated thermodynamic parameters indicate that MB adsorption on SA-SiO2-PAMPS is spontaneous and endothermic.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Azul de Metileno/química , Dióxido de Silício , Alginatos/química , Água , Moléculas com Motivos Associados a Patógenos , Corantes/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
8.
Sci Total Environ ; 882: 163364, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031929

RESUMO

Lead (Pb) is a major environmental pollutant that threatens the soil environment and human health. Monitoring and assessing Pb toxicity on soil health are of paramount importance to the public. To use soil enzymes as biological indicators of Pb contamination, herein, the responses of soil ß-glucosidase (BG) in different pools of soil (total, intracellular and extracellular enzyme) to Pb contamination were investigated. The results indicated that the intra-BG (intracellular BG) and extra-BG (extracellular BG) responded differently to Pb contamination. While the addition of Pb caused a significant inhibition of the intra-BG activities, the extra-BG activities were only slightly inhibited. Pb showed a non-competitive inhibition to extra-BG, while both non-competitive and uncompetitive inhibition were observed for intra-BG in the tested soils. The dose-response modeling was used to calculate ecological dose ED10, which represents the concentration of Pb pollutant that causes a 10 % reduction in Vmax, to express the ecological consequences of Pb contamination. A positive correlation was found between ecological dose ED10 values of intra-BG and soil total nitrogen (p < 0.05), which suggests soil properties may influence Pb toxicity to soil BG. Based on the differences in ED10 and inhibition rate among different enzyme pools, this study suggests that the intra-BG is more sensitive for Pb contamination assessment. From this, we propose that intra-BG should be considered when evaluating Pb contamination using soil enzymes as indicators.


Assuntos
Chumbo , Poluentes do Solo , Humanos , Chumbo/toxicidade , Solo , beta-Glucosidase , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Poluição Ambiental , Monitoramento Ambiental
9.
Sci Total Environ ; 874: 162521, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36868272

RESUMO

Fluorescein diacetate hydrolase (FDA hydrolase) is a reliable biochemical biomarker of changes in soil microbial activity and quality. However, the effect and mechanism of lower-ring polycyclic aromatic hydrocarbons (PAHs) on soil FDA hydrolase are still unclear. In this work, we investigated the effects of two typical lower-ring PAHs, naphthalene (Nap) and anthracene (Ant), on the activity and kinetic characteristics of FDA hydrolases in six soils differing in their properties. Results demonstrated that the two PAHs severely inhibited the activities of the FDA hydrolase. The values of Vmax and Km dropped by 28.72-81.24 % and 35.84-74.47 % at the highest dose of Nap, respectively, indicating an uncompetitive inhibitory mechanism. Under Ant stress, the values of Vmax decreased by 38.25-84.99 %, and the Km exhibited two forms, unchanged and decreased (74.00-91.61 %), indicating uncompetitive and noncompetitive inhibition. The inhibition constant (Ki) of the Nap and Ant ranged from 0.192 to 1.051 and 0.018 to 0.087 mM, respectively. The lower Ki of Ant compared to Nap indicated a higher affinity for enzyme-substrate complex, resulting in higher toxicity of Ant than Nap to soil FDA hydrolase. The inhibitory effect of Nap and Ant on soil FDA hydrolase was mainly affected by soil organic matter (SOM). SOM influenced the affinity of PAHs with enzyme-substrate complex, which resulted in a difference in PAHs toxicity to soil FDA hydrolase. The enzyme kinetic Vmax was a more sensitive indicator than enzyme activity to evaluate the ecological risk of PAHs. This research offers a strong theoretical foundation for quality control and risk evaluation of PAH-contaminated soils through a soil enzyme-based approach.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrolases , Solo/química , Cinética , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
10.
Environ Pollut ; 320: 121081, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646407

RESUMO

Microplastics (MPs) are a global threat to the environment, and plant uptake of MP particles (≤0.2 µm) is a particular cause for concern. However, physiological and molecular mechanisms underlying MP-induced growth inhibition need to be clarified. Towards this goal, we conducted a hydroponic experiment to investigate the accumulation of MPs, changes in physiology, gene expression, and metabolites in lettuce from a series of concentrations of fluorescence-labelled polystyrene MPs (0, 10, 20, 30, 40, 50 mg L-1, ∼0.2 µm). Our results showed that MPs accumulated in the lettuce root tips and leaf veins, resulting in the hypertonic injury of lettuce, and the down-regulation of genes related to ion homeostasis. Stress-related genes were up-regulated, and sphingolipid metabolism increased in response to MP additions, causing increased biosynthesis of ascorbic acid, terpenoid, and flavonoids in root exudates. Our findings provide a molecular-scale perspective on the response of leafy vegetables to MP-stress at a range of concentrations. This enables more comprehensive evaluation of the risks of MPs to human health and the ecological environment.


Assuntos
Microplásticos , Plásticos , Humanos , Transcriptoma , Poliestirenos
11.
Potato Res ; 66(1): 231-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35996391

RESUMO

Virus infection is the key constraint to potato cultivation worldwide. Especially, coinfection by multiple viruses could exacerbate the yield loss. Transgenic plants expressing artificial microRNAs (amiRNAs) have been shown to confer specific resistance to viruses. In this study, three amiRNAs containing Arabidopsis miR159 as a backbone, expressing genes targeting P25, HC-Pro and Brp1 of potato virus X (PVX), potato virus Y (PVY) and potato spindle tuber viroid (PSTVd), were constructed. amiR-159P25, amiR-159HCPro and amiR-159Brp1 were cloned into the plant expression vector pCAMBIA1301 with a CaMV35S promoter, producing the p1301-pre-amiRP25-HCPro-Brp1 vector. Twenty-three transgenic plants (Solanum tuberosum cv. 'Youjin') were obtained by Agrobacterium tumefaciens-mediated transformation, and ten PCR-positive transplants were chosen for further analysis. Quantitative real-time PCR results indicated that 10 transgenic plants could express amiRNAs successfully. Southern blotting hybridization proved that amiR-159P25-HCPro-Brp1 had integrated into potato genome in transgenic lines. Viral (viroid) challenge assays revealed that these transgenic plants demonstrated resistance against PVX, PVY and PSTVd coinfection simultaneously, whereas the untransformed controls developed severe symptoms. This study demonstrates a novel amiRNA-based mechanism that may have the potential to develop multiple viral resistance strategies in potato.

12.
Chemosphere ; 312(Pt 1): 137262, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36400195

RESUMO

Pyrolysis of agricultural waste into biochar for soil remediation is a useful solid waste management strategy. However, it is still unclear how different agricultural feedstocks affect the properties of biochars and their effectiveness in remediation of PBDE-contaminated soil. In this study, we systematically investigated dynamic alterations of soil properties, microbial communities, and PBDE dissipation and bioavailability induced by the application of biochars from manure (MBC) and straw (SBC) to PBDE-contaminated soil. The results showed that soil properties, microbial community structure, and diversity changed differently with the incorporation of the two biochars. MBC had a larger surface area (17.4 m2/g) and a higher nutrient content (45.1% ash content), making it more suitable for use as a soil additive to improve soil quality and nutrient conditions, as well as to stimulate microbial growth. SBC showed higher adsorption capacity for 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) (26.73 ± 0.65 mg/g), thus lowering the bioavailability and ecological risk of BDE-47 in soil. BDE-47 was stepwise debrominated into lower brominated PBDE by PBDE-degrading bacteria. MBC accelerated the debromination of BDE-47 (10.1%) by promoting PBDE-degrading microorganisms, while this was inhibited by SBC (3.5%) due to strong adsorption of BDE-47. In addition, we found that both types of biochar favored Nitrospirae bacteria and promoted N cycling. Overall, biochars from manure and straw can positively shape soil microbial communities differently by altering soil properties, soil fertility and nutrient availability, and the fate and the effects of contaminants, which ultimately led to a difference in the potential of biochars for their use in soil remediation.


Assuntos
Microbiota , Poluentes do Solo , Esterco , Carvão Vegetal/química , Solo/química , Poluentes do Solo/análise , Nitrogênio
13.
Chemosphere ; 311(Pt 2): 137116, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334756

RESUMO

The application of parathion (PTH) in agriculture can result in its entry into the soil and threaten the soil environment. Monitoring the PTH residues and assessing toxicity on soil health are of paramount importance to the public. Herein, the dissipation of PTH and concomitant influence on microbial activities [FDA hydrolase (FDA‒H), microbial biomass carbon (MBC) and basal respiration (BR)] in coastal solonchaks were investigated. Results showed that the dissipation of PTH in tested soil declined linearly, and the half-lives varied from 5.6 to 56.8 days, depending on pollutant concentrations. The FDA‒H activity and MBC were negatively affected by PTH pollution and exhibited a significantly positive correlation. Two‒way ANOVA analysis demonstrated that microbial activities were affected not only by PTH dose and incubation time but also by their interactions. The integrated biomarker response (IBR/n) index values on day 120 were between 1.02 and 2.89, larger than those on day 1 during PTH dissipation. This implied that the soil quality did not recover though there was no PTH residue in the soil at the end of the experiment. These findings suggested that microbial activities integrated with IBR/n index could elucidate the hazardous impacts of PTH dissipation on biochemical cycling and microorganisms in soil.

14.
Talanta ; 255: 124197, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571974

RESUMO

Bacterial reference materials (RMs) play a crucial role in many analytical processes of microbiological detection. Currently, bacteria are typically counted using the traditional plate-based approach, which results in a higher uncertainty of bacterial RMs unfortunately. Therefore, novel methods are urgently required for the value assignment of RMs in the field of microbiology to derive measurement traceability and accuracy. A potential primary method for microbiological quantification based on flow cytometry (FCM) is described in this study using Escherichia coli O157 (E. coli O157) as an example. The proposed method was applied to determine the number of viable E. coli O157 cells in the RMs with a result of (5.48 ± 0.27) × 108 cells mL-1, which was in good agreement with the result obtained using the plate-based method (En = 0.47). Additionally, this method could be entirely described and understood by equations, and provides formal traceability to the SI for counts of viable bacterial cells, while the associated relative expanded uncertainty (4.93%, k = 2) was significantly lower in comparison to the plate-based method. Therefore, the FCM-based method might be a potential primary method for characterizing bacterial RMs. To our knowledge, this is the first description of FCM as a potential primary method for accurate and traceable quantification of viable bacterial cells with a comprehensive uncertainty statement in microbiological metrology.


Assuntos
Escherichia coli O157 , Microbiologia de Alimentos , Citometria de Fluxo/métodos , Bactérias
15.
Environ Sci Technol ; 56(23): 16907-16918, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36354282

RESUMO

Microplastics (MPs) can enter plants through the foliar pathway and are potential hazards to ecosystems and human health. However, studies related to the molecular mechanisms underlying the impact of foliar exposure to differently charged MPs to leafy vegetables are limited. Because the surfaces of MPs in the environment are often charged, we explored the uptake pathways, accumulation concentration of MPs, physiological responses, and molecular mechanisms of lettuce foliarly exposed to MPs carrying positive (MP+) and negative charges (MP-). MPs largely accumulated in the lettuce leaves, and stomatal uptake and cuticle entry could be the main pathways for MPs to get inside lettuce leaves. More MP+ entered lettuce leaves and induced physiological, transcriptomic, and metabolomic changes, including a decrease in biomass and photosynthetic pigments, an increase in reactive oxygen species and antioxidant activities, a differential expression of genes, and a change of metabolite profiles. In particular, MP+ caused the upregulation of circadian rhythm-related genes, and this may play a major role in the greater physiological toxicity of MP+ to lettuce, compared to MP-. These findings provide direct evidence that MPs can enter plant leaves following foliar exposure and a molecular-scale perspective on the response of leafy vegetables to differently charged MPs.


Assuntos
Microplásticos , Humanos , Plásticos , Transcriptoma , Ecossistema , Verduras
16.
J Agric Food Chem ; 70(48): 15311-15320, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36442135

RESUMO

The accumulation of organic pollutants in vegetables is a major global food safety issue. The concentrations of pollutants in vegetables usually differ across different tissues because of different transport and accumulation pathways. However, owing to the limitations of conventional methods, in situ localization of typical organic pollutants such as phthalate esters (PAEs) in plant tissues has not yet been studied. Here, we developed a quick and efficient method for in situ detection and imaging of the spatial distribution of PAEs in a typical root vegetable, carrot, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). The use of a 2,5-dihydroxybenzoic acid matrix with a spray-sublimation coating method led to the successful identification of PAEs ion signals. The IMS results showed that a typical PAE-di-(2-ethylhexyl)phthalate (DEHP) was broadly distributed in the cortex, phloem, and metaxylem, but was barely detectable in the cambium and protoxylem. Interestingly, MALDI-IMS data also revealed for the first time the spatial distribution of sugars and ß-carotene in carrots. In summary, the developed method offers a new and practical methodology for the in situ analysis of PAEs and plant metabolites in plant tissues. As a result, it could provide a more intuitive understanding of the movement and transformation of organic pollutants in soil-plant systems.


Assuntos
Daucus carota , Ésteres , Espectrometria de Massas , Lasers
17.
Talanta ; 245: 123448, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398747

RESUMO

Accurate and online quantification of viable cells is one of the necessary requirements during the microbial fermentation process for high productivity. The flow cytometry (FCM)-based method accurately quantifies viable cells, but this offline method cannot reflect the counts constantly. The dielectric spectroscopy (DS) sensor is widely utilized to monitor viable cells online; however, accurately converting the capacitance value of the DS sensor to the viable bacterial cell counts has barely been tried. We have developed a method by coupling the principles and techniques of FCM and the DS sensor to quantify viable Rhodobacter sphaeroides cells. Using specific fluorescent antibodies and propidium iodide (PI), viable R. sphaeroides cells were accurately quantified within 30 min by FCM. The DS sensor was combined with the FCM to create a direct capacitance-viable cell count quantification system. The LOD (limit of detection) of the FCM-DS method was 8 × 108 CFU/mL, RSD (relative standard deviation) < 5%, along with good reproducibility of the results. Finally, the viable cell count, obtained from the FCM-DS method, was applied to regulate the specific oxygen uptake rate (QO2) that increased the production of coenzyme Q10 by 8.1%. Together, our results strongly suggest that viable cells can be accurately quantified online by the integrated FCM-DS method, which would help to devise precise fermentation control strategies.


Assuntos
Rhodobacter sphaeroides , Contagem de Células , Espectroscopia Dielétrica , Citometria de Fluxo/métodos , Reprodutibilidade dos Testes
18.
J Hazard Mater ; 431: 128566, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35359109

RESUMO

Microplastics (MPs) have attracted increasing concern as emerging contaminants of global importance in recent years. Soil is considered an important sink for MPs. Due to environmental weathering, MP surfaces are often charged, but there are limited studies on the interaction of differentially charged MP with soils. This study constructed Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy profiles, investigated the interaction mechanism of polystyrene MPs (0.2 µm) with positive (MP+) and negative (MP-) charges on nine typical soils through quantitative analysis of fluorescence intensity. The attachment of MPs to different soils fitted the pseudo-second-order kinetic model well. The attachment isotherm data of MP+ fitted the linear model better, while the MP- data fitted the Langmuir model. The attachment capacity of MPs was significantly correlated with the zeta potential of soils. These results, as well as the fourier transform infrared spectroscopy (FTIR) spectra and scanning electronic microscopy (SEM) images of soils, indicated that electrostatic interactions and physical trapping were the dominant mechanisms for MP attachment to soils. These results showed a strong affinity for MPs attachment on soil and gave insights to predict the transport, fate and ecological effect of different charged MPs in soil.


Assuntos
Plásticos , Solo , Cinética , Microplásticos , Plásticos/química , Poliestirenos , Solo/química
19.
Water Res ; 217: 118377, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35397372

RESUMO

Ferrate (Fe(VI)) salts like K2FeO4 are efficient green oxidants to remediate organic contaminants in water treatment. Minerals are efficient sorbents of contaminants and also excellent solid heterogeneous catalysts which might affect Fe(VI) remediation processes. By targeting the typical polycyclic aromatic hydrocarbon compound - pyrene, the application of Fe(VI) for oxidation of pyrene immobilized on three minerals, i.e., montmorillonite, kaolinite and goethite was studied for the first time. Pyrene immobilized on the three minerals was efficiently oxidized by Fe(VI), with 87%-99% of pyrene (10 µM) being degraded at pH 9.0 in the presence of a 50-fold molar excess Fe(VI). Different minerals favored different pH optima for pyrene degradation, with pH optima from neutral to alkaline following the order of montmorillonite (pH 7.0), kaolinite (pH 8.0), and goethite (pH 9.0). Although goethite revealed the highest catalytic activity on pyrene degradation by Fe(VI), the greater noneffective loss of the oxidative species by ready self-decay in the goethite system resulted in lower degradation efficiency compared to montmorillonite. Protonation and Lewis acid on montmorillonite and goethite assisted Fe(VI) oxidation of pyrene. The intermediate ferrate species (Fe(V)/Fe(IV)) were the dominant oxidative species accountable for pyrene oxidation, while the contribution of Fe(VI) species was negligible. Hydroxyl radical was involved in mineral-immobilized pyrene degradation and contributed to 11.5%-27.4% of the pyrene degradation in montmorillonite system, followed by kaolinite (10.8%-21.4%) and goethite (5.1%-12.2%) according to the hydroxyl radical quenching experiments. Cations abundant in the matrix and dissolved humic acid hampered pyrene degradation. Finally, two different degradation pathways both producing phthalic acid were identified. This study demonstrates efficient Fe(VI) oxidation of pyrene immobilized on minerals and contributes to the development of efficient environmentally friendly Fe(VI) based remediation techniques.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Bentonita , Radical Hidroxila , Ferro , Caulim , Cinética , Minerais , Oxirredução , Estresse Oxidativo , Pirenos , Poluentes Químicos da Água/análise , Purificação da Água/métodos
20.
Chemosphere ; 299: 134446, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35358551

RESUMO

Soil amendment with biochar may trigger a series of positive and negative biological effects, partly because it interferes quorum sensing (QS) signals synthesized by microorganisms for communication. However, the mechanisms through which biochar interacts with these QS signals remain elusive. This study explored the mechanisms of interactions between N-acyl homoserine lactones (AHLs) and two maize straw-derived biochars (MBs) with different pyrolysis temperature. Pseudo-second-order equation model best depicted AHLs sorption kinetics on MBs. The intra-particle diffusion model revealed that AHLs sorption onto MBs consists of several stages. The sorption isotherms data of AHLs on MBs were in well agreement with both Langmuir and Freundlich models, indicating the occurrence of energetic distribution of active sites on the heterogeneous biochar with multilayer sorption. However, the AHLs sorption capacity on MBs varied, with biochar pyrolyzed at 600 °C displaying a higher AHLs sorption capacity compared with biochar pyrolyzed at 300 °C. It may be attributed to a variety of physiochemical interactions such as pore filling, functional groups complexation, hydrogen bond, and hydrophobic action. The adsorption/partitioning model results and thermodynamic parameters of Gibbs free energy (ΔG) confirmed that physical and chemical sorption occurred concurrently throughout the whole AHLs sorption process, with physical partitioning playing a greater role than surface sorption. The findings suggest that soil amendment with biochar may have a variety of effects on intra/inter-cellular communication, further implying biochar can be specially prepared to mediate soil processes related to microbial communication, like pollutant biodegradation, and carbon/nitrogen cycling.


Assuntos
Acil-Butirolactonas , Zea mays , Adsorção , Carvão Vegetal/química , Cinética , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...